知名百科  > 所屬分類  >  百科詞條   

自監(jiān)督學(xué)習(xí)

自監(jiān)督學(xué)習(xí)算法自然語言處理計(jì)算機(jī)視覺等領(lǐng)域取得了重大進(jìn)展。這些自監(jiān)督學(xué)習(xí)算法盡管在概念上是通用的,但是在具體操作上是基于特定的數(shù)據(jù)模態(tài)的。這意味著需要為不同的數(shù)據(jù)模態(tài)開發(fā)不同的自監(jiān)督學(xué)習(xí)算法。為此,本文提出了一種通用的數(shù)據(jù)增強(qiáng)技術(shù),可以應(yīng)用于任意數(shù)據(jù)模態(tài)。相較于已有的通用的自監(jiān)督學(xué)習(xí),該方法能夠取得明顯的性能提升,同時(shí)能夠代替一系列為特定模態(tài)設(shè)計(jì)的復(fù)雜的數(shù)據(jù)增強(qiáng)方式并取得與之類似的性能。


當(dāng)前 Siamese 表征學(xué)習(xí) / 對(duì)比學(xué)習(xí)需要利用數(shù)據(jù)增強(qiáng)技術(shù)來構(gòu)建同一個(gè)數(shù)據(jù)的不同樣本,并將其輸入兩個(gè)并行的網(wǎng)絡(luò)結(jié)構(gòu),從而產(chǎn)生足夠強(qiáng)的監(jiān)督信號(hào)。然而這些數(shù)據(jù)增強(qiáng)技術(shù)往往非常依賴于模態(tài)特定的先驗(yàn)知識(shí),通常需要手動(dòng)設(shè)計(jì)或者搜索適用于當(dāng)前模態(tài)的最佳組合。除了耗時(shí)耗力外,找到的最優(yōu)數(shù)據(jù)增強(qiáng)方式也極難遷移到別的領(lǐng)域。例如,常見的針對(duì)于自然 RGB 圖像的顏色抖動(dòng)(color jittering)無法應(yīng)用于除了自然圖像以外的其他數(shù)據(jù)模態(tài)。 一般性地,輸入數(shù)據(jù)可以被表征為由序列維度(sequential)和通道維度(channel)組成的二維向量。其中序列維度通常是模態(tài)相關(guān)的,例如圖像上的空間維度、語音的時(shí)間維度以及語言的句法維度。而通道維度是模態(tài)無關(guān)的。在自監(jiān)督學(xué)習(xí)中,masked modeling [1] 或者以 masking 作為數(shù)據(jù)增強(qiáng) [2] 已經(jīng)成為一種有效的學(xué)習(xí)方式。然而這些操作都作用于序列維度。為了能夠廣泛應(yīng)用于不同數(shù)據(jù)模態(tài),本文提出一種作用于通道維度的數(shù)據(jù)增強(qiáng)手段:隨機(jī)量化(randomized quantization)。每個(gè)通道中的數(shù)據(jù)通過非均勻量化器進(jìn)行動(dòng)態(tài)量化,量化值是從隨機(jī)劃分的區(qū)間中隨機(jī)采樣的。通過這種方式,落在同一個(gè)區(qū)間內(nèi)原始輸入的信息差被刪除,同時(shí)不同區(qū)間數(shù)據(jù)的相對(duì)大小被保留,從而達(dá)到 masking 的效果。

18f147e4-4a3f-11ee-97a6-92fbcf53809c.png

該方法在各種不同數(shù)據(jù)模態(tài)上超過了已有任意模態(tài)自監(jiān)督學(xué)習(xí)方法,包括自然圖像、3D 點(diǎn)云、語音、文本、傳感器數(shù)據(jù)、醫(yī)療圖像等。在多種預(yù)訓(xùn)練學(xué)習(xí)任務(wù)中,例如對(duì)比學(xué)習(xí)(例如 MoCo-v3)和自蒸餾自監(jiān)督學(xué)習(xí)(例如 BYOL)都學(xué)到了比已有方法更優(yōu)的特征。該方法還經(jīng)過驗(yàn)證,適用于不同的骨干網(wǎng)絡(luò)結(jié)構(gòu),例如 CNN 和 Transformer。 方法 量化(Quantization)指的是利用一組離散的數(shù)值表征連續(xù)數(shù)據(jù),以便于數(shù)據(jù)的高效存儲(chǔ)、運(yùn)算以及傳輸。然而,一般的量化操作的目標(biāo)是在不損失精確度的前提下壓縮數(shù)據(jù),因而該過程是確定性的,而且是設(shè)計(jì)為與原數(shù)據(jù)盡量接近的。這就限制了其作為增強(qiáng)手段的強(qiáng)度和輸出的數(shù)據(jù)豐富程度。 本文提出一種隨機(jī)量化操作(randomized quantization),將輸入的每個(gè) channel 數(shù)據(jù)獨(dú)立劃分為多個(gè)互不重疊的隨機(jī)區(qū)間(1901cea2-4a3f-11ee-97a6-92fbcf53809c.png),并將落在各個(gè)區(qū)間內(nèi)的原始輸入映射到從該區(qū)間內(nèi)隨機(jī)采樣的一個(gè)常數(shù)190b8244-4a3f-11ee-97a6-92fbcf53809c.png

19153942-4a3f-11ee-97a6-92fbcf53809c.png

隨機(jī)量化作為自監(jiān)督學(xué)習(xí)任務(wù)中 masking 通道維度數(shù)據(jù)的能力取決于以下三個(gè)方面的設(shè)計(jì):1) 隨機(jī)劃分?jǐn)?shù)值區(qū)間;2) 隨機(jī)采樣輸出值以及 3)劃分的數(shù)值區(qū)間個(gè)數(shù)。 具體而言,隨機(jī)的過程帶來了更加豐富的樣本,同一個(gè)數(shù)據(jù)每次執(zhí)行隨機(jī)量化操作都可以生成不同的數(shù)據(jù)樣本。同時(shí),隨機(jī)的過程也帶來對(duì)原始數(shù)據(jù)更大的增強(qiáng)力度,例如隨機(jī)劃分出大的數(shù)據(jù)區(qū)間,或者當(dāng)映射點(diǎn)偏離區(qū)間中值點(diǎn)時(shí),都可以導(dǎo)致落在該區(qū)間的原始輸入和輸出之間的更大差異。 除此之外,也可以非常容易地通過適當(dāng)減少劃分區(qū)間的個(gè)數(shù),提高增強(qiáng)力度。這樣,當(dāng)應(yīng)用于 Siamese 表征學(xué)習(xí)的時(shí)候,兩個(gè)網(wǎng)絡(luò)分支就可以見到有足夠信息差異的輸入數(shù)據(jù),從而構(gòu)建足夠強(qiáng)的學(xué)習(xí)信號(hào),幫助到特征學(xué)習(xí)。 下圖可視化了不同數(shù)據(jù)模態(tài)在使用了該數(shù)據(jù)增強(qiáng)方式之后的效果:

192515d8-4a3f-11ee-97a6-92fbcf53809c.png

實(shí)驗(yàn)結(jié)果模態(tài) 1:圖像 本文在 ImageNet-1K 數(shù)據(jù)集上評(píng)估了 randomized quantization 應(yīng)用于 MoCo-v3 和 BYOL 的效果,評(píng)測(cè)指標(biāo)為 linear evaluation。當(dāng)作為唯一的數(shù)據(jù)增強(qiáng)方式單獨(dú)使用的時(shí)候,即將本文的 augmentation 應(yīng)用于原始圖像的 center crop,以及和常見的 random resized crop(RRC)配合使用的時(shí)候,該方法都取得了比已有通用自監(jiān)督學(xué)習(xí)方法更好的效果。

19cc314c-4a3f-11ee-97a6-92fbcf53809c.png

相比于已有的針對(duì)圖像數(shù)據(jù)開發(fā)的數(shù)據(jù)增強(qiáng)方式,例如 color jittering (CJ),本文的方法有著明顯的性能優(yōu)勢(shì)。同時(shí),該方法也可以取代 MoCo-v3/BYOL 中一系列復(fù)雜的數(shù)據(jù)增強(qiáng)方式(Full),包括顏色抖動(dòng)(color jittering)、隨機(jī)灰度化(gray scale)、隨機(jī)高斯模糊(Gaussian blur)、隨機(jī)曝光(solarization),并達(dá)到與復(fù)雜數(shù)據(jù)增強(qiáng)方式類似的效果。

1a0d2bd4-4a3f-11ee-97a6-92fbcf53809c.png

模態(tài) 2:3D 點(diǎn)云 本文還在 ModelNet40 數(shù)據(jù)集的分類任務(wù)和 ShapeNet Part 數(shù)據(jù)集的分割任務(wù)上驗(yàn)證了 randomized quantization 相對(duì)于已有自監(jiān)督工作的優(yōu)越性。尤其在下游訓(xùn)練集數(shù)據(jù)量較少的情況下,本文的方法顯著超過已有點(diǎn)云自監(jiān)督算法。

1a27a96e-4a3f-11ee-97a6-92fbcf53809c.png

模態(tài) 3:語音 在語音數(shù)據(jù)集上本文的方法也取得了比已有自監(jiān)督學(xué)習(xí)方法更優(yōu)的性能。本文在六個(gè)下游數(shù)據(jù)集上驗(yàn)證了該方法的優(yōu)越性,其中在最難的數(shù)據(jù)集 VoxCeleb1 上(包含最多且遠(yuǎn)超其他數(shù)據(jù)集的類別個(gè)數(shù)),本文方法取得了顯著的性能提升(5.6 個(gè)點(diǎn))。

1a3fdfac-4a3f-11ee-97a6-92fbcf53809c.png

模態(tài) 4:DABS DABS 是一個(gè)模態(tài)通用自監(jiān)督學(xué)習(xí)的基準(zhǔn),涵蓋了多種模態(tài)數(shù)據(jù),包括自然圖像、文本、語音、傳感器數(shù)據(jù)、醫(yī)學(xué)圖像、圖文等。在 DABS 涵蓋的多種不同模態(tài)數(shù)據(jù)上,我們的方法也優(yōu)于已有的任意模態(tài)自監(jiān)督學(xué)習(xí)方式。

1a68cf48-4a3f-11ee-97a6-92fbcf53809c.png

?

附件列表


0

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

如果您認(rèn)為本詞條還有待完善,請(qǐng) 編輯

上一篇 量子效率光譜    下一篇 連接組件應(yīng)用

標(biāo)簽

暫無標(biāo)簽

同義詞

暫無同義詞
主站蜘蛛池模板: 窝窝女人体国产午夜视频| www国产成人免费观看视频| 涩涩涩在线视频| 国产欧美一区二区精品久久久| 中文字幕在线网址| 欧美日韩在线视频一区| 国产亚洲欧美在线专区| 99在线视频免费观看| 日韩乱码人妻无码中文字幕久久 | 97成人碰碰久久人人超级碰OO| 日韩精品无码人妻一区二区三区 | 天天爽夜夜爽夜夜爽| 亚洲AV之男人的天堂| 精品人人妻人人澡人人爽人人 | 第一福利官方航导航| 国产精品伦一区二区三级视频| 中文字幕无码日韩专区| 欧美日韩亚洲成色二本道三区| 国产aⅴ一区二区| 18禁黄网站禁片无遮挡观看| 成人欧美一区二区三区| 亚洲喷奶水中文字幕电影| 美女胸被狂揉扒开吃奶二次元 | 夏夏和三个老头第二部| 久久人人妻人人做人人爽| 欧美高清免费一级在线| 四虎在线精品观看免费| 窝窝午夜色视频国产精品东北 | 黄色链接在线观看| 天堂а√中文最新版地址在线| 久久亚洲国产精品五月天婷 | 男人肌肌插女人肌肌| 国产在线不卡视频| 91麻豆精品国产一级| 成人在线免费看片| 亚洲gv天堂gv无码男同| 男人的天堂网在线| 国产乱色在线观看| 老司机69精品成免费视频| 女人被男人狂躁免费视频| 久久久久亚洲精品中文字幕 |